
Developing An Effective Metrics Program

L. Rosenberg, Ph.D.,

Unisys /GSFC, Bld 6 Code 300.1,

Grenebelt, MD 20771 USA,

Tel:301-286-0087,

Fax: 301-286-0304

L. Hyatt,

GSFC NASA Bld 6 Code 302.

 Greenbelt, MD 20771 USA

Tel:301-286-7475,

Fax: 301-286-1701

ABSTRACT

Software metrics programs can be very cost effective or a total waste of resources. This paper
discusses how to develop an effective, affordable metrics program that will help project
managers monitor project risks and evaluate product quality. The Goal/Question/Metric
paradigm (GQM) is used to demonstrate how a meaningful metrics program can be started and
uses data from projects at Goddard Space Flight Center (GSFC) to demonstrate some analysis
and application techniques.

This paper supplies both project managers and software developers with techniques to initiate a
metrics program that yields timely, relevant, usable information at minimal cost.

1. INTRODUCTION

The Software Assurance Technology Center (SATC) was established in 1992 in the Systems
Reliability and Safety Office at NASA's Goddard Space Flight Center (GSFC). The SATC has
programs in four areas: Software Standards and Guidebooks; Software Metrics Research and
Development; Assurance Tools and Techniques; and Project Support and Outreach. The SATC,
as a center of excellence in software assurance, is dedicated to making measurable improvement
in the quality and reliability of software developed for GSFC and NASA.

But developing a metrics program is not easy. It has many possible pit-falls that can lead to the
ruin of the metrics program itself and possibly the project if incorrectly applied. This paper starts
with a discussion of the costs versus benefits of a metrics program. How to develop and
implement a metrics program using the Goal/Question/Metric Paradigm is then discussed,
followed by an example using data from GSFC projects.

2. METRIC PROGRAM COSTS VS. BENEFITS

It is difficult to pin down the costs of a metrics program because metrics are usually just one
aspect of an overall improvement program. When investigating the feasibility of starting a
metrics program, it is often found that managers are individually collecting some form of data.
This decreases initial program start up cost. Accurate and complete measurements are not
inexpensive; comprehensive metrics programs for software products and process annual costs
can be 2 to 3 percent of the total software budget for collecting hard data.[31 Attempts to pin
down the cost of metrics hide the real issue, however, developers don't really have a choice. The
cost of not implementing a software metrics program can be measured in terms of project and
business failures. Those projects and companies who make the investment in metrics have a
competitive advantage over those who do not. They have the advantage of more informed and
timely decisions that will ultimately make them more successful, with the best track records in
terms of bringing software projects to completion and achieving high levels of user
satisfaction.[2]

It is difficult, if not impossible, to place a dollar amount on the benefits of a metrics program
because as in the case of risk management, you are trying to measure something that did not
happen. The benefits derived are also not only applicable to the current project but to future
projects. As with any new project, whether it is implementing a new engineering design or a
metrics program, start up costs are high. But as management and staff become familiar with the
tasks and tools are developed, the costs decrease to a low maintenance level.

3. DEVELOPING A METRICS PROGRAM

3.1 Where to Start

Once a developer decides to implement a metrics program, the next step is How. How a metrics
program is developed can determine its success or failure. One approach is to investigate tools
available for metrics collection, purchase the tool, then collect and attempt to apply whatever
metrics are provided by the tool. This may work but has a major hurdle - what will the data
collected tell the management and developers about their specific project. Data collected just
because it is available has minimal value at best and usually ends up a waste of resources.

Successful metrics programs generally begin by focusing on a problem. At the start of the
metrics program, goals must be established that address the problem. Related questions that
management wants answered are identified then the data that is needed to answer these questions
are specified. This leads to the tool specification for purchase or in-house development. Data
collection can be expensive if not carefully monitored - the temptation is to collect all possible
data and decide how to use it later.

The earlier benefits are seen by both management and developers, the sooner metrics programs
are accepted. Metric programs should be designed to show visible benefits as soon as possible,
this is the key to continued support.

3.2 Goal/Question/Metric (GQM) Paradigm

The Goal/Question/Metric (GQM) Paradigm is a mechanism that provides a framework for
developing a metrics program. It was developed at the University of Maryland as a mechanism

for formalizing the tasks of characterization, planning, construction, analysis, learning and
feedback. The GQM paradigm was developed for all types of studies, particularly studies
concerned with improvement issues. The paradigm does not provide specific goals but rather a
framework for stating goals and refining them into questions to provide a specification for the
data needed to help achieve the goals.[l]

The GQM paradigm consists of three steps:

1. 1. Generate a set of goals
2. Derive a set of questions
3. Develop a set of metrics

1 - Generate a set of goals based upon the needs of the organization- Determine what it is you
want to improve. This provides a framework for determining whether or not you have
accomplished what you set out to do. Goals are defined in terms of purpose, perspective and
environment using generic templates:

Purpose: To (characterize, evaluate, predict, motivate, etc.)the (process, product, model, metric,
etc.) in order to (understand, assess, manage, engineer, learn, improve, etc.) it.

Perspective: Examine the (cost, effectiveness, correctness, defects, changes, product metrics,
reliability, etc.) from the point of view of the (developer, manager, customer, corporate
perspective, etc.)

Environment: The environment consists of the following: process factors, people factors,
problem factors. methods, tools, constraints, etc.

2 - Derive a set of questions - The purpose of the questions is to quantify the goals as completely
as possible. This requires the interpretation of fuzzy terms within the context of the development
environment. Questions are classified as product-related or processrelated and provide feedback
from the quality perspective. Product-related questions define the product and the evaluation of
the product with respect to a particular quality (e.g., reliability, user satisfaction). Process-related
questions include the quality of use, domain of use, effort of use, effect of use and feedback from
use.

3 - Develop a set of metrics and distributions that provide the information needed to answer the
questions - In this step, the actual data needed to answer the questions are identified and
associated with each of the questions. As data items are identified, it must be understood how
valid the data item will be with respect to accuracy and how well it responds to the specific
question. The metrics should be objective and subjective and should have interpretation
guidelines, i.e., what value of the metric specifies the product higher quality. Generally, a single
metric will not answer a question, but a combination of metrics is needed.
Once goals are defined, questions derived, and metrics developed, matrices are created to
indicate their relationships and to identify single relationships that may not be cost effective.

3.3 GQM Example

The most effective way to understand a methodology is to review an example. This section
demonstrates how a small metrics program would be developed using the GQM. The program

starts with the goals, questions and proposed metrics, then demonstrates how GSFC data could
be used to answer some of the questions and satisfy the goals.

Figure 1 demonstrates sample goals, questions and metrics. The goals are general and could be
adapted with minor modifications to any project development. Questions are derived to quantify
the goals, often supporting more than one goal as shown in parenthesis(). The metrics needed to
provide the answers to the questions are then chosen and shown in italics.

Figure 1: Goals/Questions/Metrics

Matrices similar to Figure 2 are developed showing direct and indirect correlations between
goals and questions, then questions and metrics.

Figure 2: Goals -> Questions

In the remainder of the paper, we will demonstrate some of the metrics and data that can be used
to answer the questions and satisfy the goals.

Question 1: Expected vs. actual effort level

Effort is usually measured in hours worked on specific project tasks, such as training,
requirements, design, coding, and testing. In Figure 3, the Rayleigh Manpower Curve for effort
expenditure for a typical software project is plotted against some project effort data. [4] Projects
ramp up to full speed fairly quickly, then taper off as the maintenance phase approaches.
Applying this curve assists managers adjust personnel levels to the expected work load.

Figure 3: Rayleigh Manpower Curve

Question 2: Requirement volatility

Late requirement changes are costly and may cause a ripple effect and additional changes. The
earlier in the Life cycle the requirements stabilize, the less the risk. Figure 4 shows total
requirements per schedule, indicating stabilizing requirements. Modifications should also be
tracked.

Figure 4: Stabilization of Requirements

Question 4: 90% of the errors be located.

This implies the ability to estimate the total number of errors in the software. One industry
guideline is to expect approximately7 errors per 1000 Source Lines of Code. This guideline is
helpful in an overall estimate of the number of errors, but does not take into account the rate at
which errors are removed. The SATC is working to release the Waterman Error Trending Model
for determining the status of testing by projecting the number of errors remaining in the software
and the expected time to find some percentage of errors. The SATC is developing this model
rather than using the standard Musa model because it provides for nonconstant testing resource
levels and is less sensitive to data inaccuracy. Figure5 is an example of the model's application.

Figure 5: Waterman Error Trending Model

If this project is expected to release at week 52, Figure 5 indicates that 96% of the errors will be
found.

Question 6: Modules exceeding guidelines

Figure 6 is a graph template developed by the SATC to use as an indicator of the module risk
levels. The x-axis represents the number of executable statements in a module; the y-axis is the
extended cyclomatic complexity (number of test paths) for the module.

There are many different guidelines for both code measures as to when risk increases or
decreases and what is are acceptable levels. The parameters in Figure 6 are based on guidelines
from various industry, military and NASA sources as well as error correlations from GSFC data.

Figure 6: Classification of Module Risk

To apply the graph in Figure 6, each module of code is plotted as shown in Figure 7. The
percentage of modules in each region and a list of module names in Regions 4, 5, and 6 are
supplied to the project management. It is recommended that developers further investigate the
modules in these regions using further using metrics such as fan in/ fan out, comment percentage
and number of errors. One observation made by the SATC is that C and C++ code have a lower
percentage of modules in Regions 4, 5 and 6 than FORTRAN.

Figure 7: Modules at Risk in a FORTRAN Project

Question 7: High risk modules

To answer question 7, inputs from multiple metric are needed. One factor is the risk derived
from Table 3. The number of errors by criticality also serves as an input. Comment percentage
also supplies information relative to risk. Factors such as fan-in/fan-out and internal data flow
also influences risk but are not shown in Table 3.

Table 3: Risk evaluation of code modules

4. CONCLUSION

The SATC applies goals to evaluate the quality of products (requirement documents through test
applications) and provide risk information to project managers. Metric programs are initiated to
answer a question or provide numerical input to solve a problem.

The first step in developing a metrics program is to identify what are the goals or objectives of
the program, then stay focused on them. The objectives can be expanded into specific goals
using the structure of the Goal/Question/Metric templates.

The second step is to define the T attributes that are be measured. These attributes are a subset
of the quality attributes and are chosen based on the project objectives and goals. If the GQM
isused, some of the goals will relate to the attributes.

The third step in developing the metrics program is to clarify and quantify the goals. This is done
by specifying questions and identifying metrics and data that is needed. At this point a tool is
chosen based on the needs of the project.

The final and a very critical step is to close the loop - provide management with answers to their
questions based on the metric analysis. The key to continued success of a metrics program is
immediate, visible benefits. It must do the job it was designed to do and supply management
with usable information to solve their current problem in a timely fashion.

REFERENCES

[1] Basili, Victor R, and Rombach, H. Dieter,
"Tailoring the Software Process to Project Goals and Environments", Department of Computer
Science, University of Maryland, ACM, 1987.

[2] Grady, Robert, Practical Software Metrics For Project Management and Process
Improvement, Prentice Hall, 1992.

[3] Gillies, Alan, Software Quality, Theory and Management, Chapman & Hall Computing,
1992.

[4] Putnam, L., Myers, W., Measures for Excellence: Reliable Software on Time, Within Budget,
Yourdin Press, 1992.

Presented at the European Space Agency Software Assurance Symposium, Netherlands,
March, 1996.

